Published in

MDPI, Toxins, 5(12), p. 347, 2020

DOI: 10.3390/toxins12050347

Links

Tools

Export citation

Search in Google Scholar

Prevalence and Genetic Diversity of Staphylococcal Enterotoxin (-Like) Genes sey, selw, selx, selz, sel26 and sel27 in Community-Acquired Methicillin-Resistant Staphylococcus aureus

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Staphylococcal enterotoxins (SEs) are virulence factors of Staphylococcus aureus associated with various toxic diseases due to their emetic and superantigenic activities. Although at least 27 SE(-like) genes have been identified in S. aureus to date, the newly identified SE(-like) genes have not yet been well characterized by their epidemiological features. In this study, the prevalence and genetic diversity of SE gene sey and SE-like genes selw, selx, selz, sel26, and sel27 were investigated for 624 clinical isolates of community-acquired methicillin-resistant S. aureus (CA-MRSA). The most prevalent SE(-like) gene was selw (92.9%), followed by selx (85.6%), sey (35.4%) and selz (5.6%), while sel26 and sel27 were not detected. Phylogenetically, sey, selw, selx, and selz were discriminated into 7, 10, 16, and 9 subtypes (groups), respectively. Among these subtypes, sey was the most conserved and showed the highest sequence identity (>98.8%), followed by selz and selx. The SE-like gene selw was the most divergent, and four out of ten genetic groups contained pseudogenes that may encode truncated product. Individual subtypes of SE(-like) genes were generally found in isolates with specific genotypes/lineages of S. aureus. This study revealed the putative ubiquity of selw and selx and the prevalence of sey and selz in some specific lineages (e.g., ST121) in CA-MRSA, suggesting a potential role of these newly described SEs(-like) in pathogenicity.