Published in

BioMed Central, BMC Evolutionary Biology, 1(20), 2020

DOI: 10.1186/s12862-020-01627-2

Links

Tools

Export citation

Search in Google Scholar

The puzzling mitochondrial phylogeography of the black soldier fly (Hermetia illucens), the commercially most important insect protein species

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background The black soldier fly (Diptera: Stratiomyidae, Hermetia illucens) is renowned for its bioconversion ability of organic matter, and is the worldwide most widely used source of insect protein. Despite varying extensively in morphology, it is widely assumed that all black soldier flies belong to the same species, Hermetia illucens. We here screened about 600 field-collected and cultured flies from 39 countries and six biogeographic regions to test this assumption based on data for three genes (mitochondrial COI, nuclear ITS2 & 28S rDNA) and in order to gain insights into the phylogeography of the species. Results Our study reveals a surprisingly high level of intraspecific genetic diversity for the mitochondrial barcoding gene COI (divergences up to 4.9%). This level of variability is often associated with the presence of multiple species, but tested nuclear markers (ITS2 and 28S rDNA) were invariant and fly strain hybridization experiments under laboratory conditions revealed reproductive compatibility. COI haplotype diversity is not only very high in all biogeographic regions (56 distinct haplotypes in total), but also in breeding facilities and research centers from six continents (10 haplotypes: divergences up to 4.3%). The high genetic diversity in fly-breeding facilities is mostly likely due to many independent acquisitions of cultures via sharing and/or establishing new colonies from field-collected flies. However, explaining some of the observed diversity in several biogeographic regions is difficult given that the origin of the species is considered to be New World (32 distinct haplotypes) and one would expect severely reduced genetic diversity in the putatively non-native populations in the remaining biogeographic regions. However, distinct, private haplotypes are known from the Australasian (N = 1), Oriental (N = 4), and the Eastern Palearctic (N = 4) populations. We reviewed museum specimen records and conclude that the evidence for introductions is strong for the Western Palearctic and Afrotropical regions which lack distinct, private haplotypes. Conclusions Based on the results of this paper, we urge the black soldier fly community to apply molecular characterization (genotyping) of the fly strains used in artificial fly-breeding and share these data in research publications as well as when sharing cultures. In addition, fast-evolving nuclear markers should be used to reconstruct the recent invasion history of the species.