Published in

Springer, Lecture Notes in Computer Science, p. 287-306, 2015

DOI: 10.1007/978-3-662-48324-4_15

Links

Tools

Export citation

Search in Google Scholar

Practical Key Recovery for Discrete-Logarithm Based Authentication Schemes from Random Nonce Bits

Proceedings article published in 2015 by Aurélie Bauer, Damien Vergnaud
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We propose statistical cryptanalysis of discrete-logarithm based authentication schemes such as Schnorr identification scheme or Girault-Poupard-Stern identification and signature schemes. We consider two scenarios where an adversary is given some information on the nonces used during the signature generation process or during some identification sessions. In the first scenario, we assume that some bits of the nonces are known exactly by the adversary, while no information is provided about the other bits. We show, for instance, that the GPS scheme with 128-bit security can be broken using only 710 signatures assuming that the adversary knows (on average) one bit per nonce. In the second scenario, we assume that all bits of the nonces are obtained from the correct ones by independent bit flipping with some small probability. A detailed heuristic analysis is provided, supported by extensive experiments.