Dissemin is shutting down on January 1st, 2025

Published in

American Association of Neurological Surgeons, Neurosurgical Focus, 1(47), p. E18, 2019

DOI: 10.3171/2019.4.focus19236

Links

Tools

Export citation

Search in Google Scholar

Vessel wall enhancement of intracranial aneurysms: fact or artifact?

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

OBJECTIVEFor patients with subarachnoid hemorrhage (SAH) and multiple intracranial aneurysms, it is often challenging to identify the ruptured aneurysm. Some investigators have asserted that vessel wall imaging (VWI) can be used to identify the ruptured aneurysm since wall enhancement after contrast agent injection is presumably related to inflammation in unstable and ruptured aneurysms. The aim of this study was to determine whether additional factors contribute to aneurysm wall enhancement by assessing imaging data in a series of patients.METHODSPatients with symptoms of SAH who subsequently underwent VWI in the period between January 2017 and September 2018 were eligible for study inclusion. Three-dimensional turbo spin-echo sequences with motion-sensitized driven-equilibrium preparation pulses were acquired using a 3-T MRI scanner to visualize the aneurysm wall. Identification of the ruptured aneurysm was based on aneurysm characteristics and hemorrhage distributions on MRI. Complementary imaging data (CT, DSA, MRI) were used to assess potential underlying enhancement mechanisms. Additionally, aneurysm luminal diameter measurements on MRA were compared with those on contrast-enhanced VWI to assess the intraluminal contribution to aneurysm enhancement.RESULTSSix patients with 14 aneurysms were included in this series. The mean aneurysm size was 5.8 mm (range 1.1–16.9 mm). A total of 10 aneurysms showed enhancement on VWI; 5 ruptured aneurysms showed enhancement, and 1 unruptured but symptomatic aneurysm showed enhancement on VWI and ruptured 1 day later. Four unruptured aneurysms showed enhancement. In 6 (60%) of the 10 enhanced aneurysms, intraluminal diameters appeared notably smaller (≥ 0.8 mm smaller) on contrast-enhanced VWI compared to their appearance on multiple overlapping thin slab acquisition time of flight (MOTSA-TOF) MRA and/or precontrast VWI, suggesting that enhancement was at least partially in the aneurysm lumen itself.CONCLUSIONSSeveral factors other than the hypothesized inflammatory response contribute to aneurysm wall enhancement. In 60% of the cases in this study, enhancement was at least partially caused by slow intraaneurysmal flow, leading to pseudo-enhancement of the aneurysm wall. Notwithstanding, there seems to be clinical value in differentiating ruptured from unruptured aneurysms using VWI, but the hypothesis that we image the inflammatory cell infiltration in the aneurysm wall is not yet confirmed.