Published in

Springer, Lecture Notes in Computer Science, p. 70-88, 2011

DOI: 10.1007/978-3-642-25385-0_4

Links

Tools

Export citation

Search in Google Scholar

Lossy Encryption: Constructions from General Assumptions and Efficient Selective Opening Chosen Ciphertext Security

Journal article published in 2011 by Brett Hemenway, Benoit Libert, Rafail Ostrovsky, Damien Vergnaud
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Lossy encryption was originally studied as a means of achieving efficient and composable oblivious transfer. Bellare, Hofheinz and Yilek showed that lossy encryption is also selective opening secure. We present new and general constructions of lossy encryption schemes and of cryptosystems secure against selective opening adversaries. We show that every re-randomizable encryption scheme gives rise to efficient encryptions secure against a selective opening adversary. We show that statistically-hiding 2-round Oblivious Transfer implies Lossy Encryption and so do smooth hash proof systems. This shows that private information retrieval and homomorphic encryption both imply Lossy Encryption, and thus Selective Opening Secure Public Key Encryption. Applying our constructions to well-known cryptosystems, we obtain selective opening secure commitments and encryptions from the Decisional Diffie-Hellman, Decisional Composite Residuosity and Quadratic Residuosity assumptions. In an indistinguishability-based model of chosen-ciphertext selective opening security, we obtain secure schemes featuring short ciphertexts under standard number theoretic assumptions. In a simulation-based definition of chosen-ciphertext selective opening security, we also handle non-adaptive adversaries by adapting the Naor-Yung paradigm and using the perfect zeroknowledge proofs of Groth, Ostrovsky and Sahai.