Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Water, 5(12), p. 1460, 2020

DOI: 10.3390/w12051460

Links

Tools

Export citation

Search in Google Scholar

Quantification and Characterization of Antimicrobial Resistance in Greywater Discharged to the Environment

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In disenfranchised communities, untreated greywater (wastewater without sewage) is often environmentally discharged, resulting in potential human exposure to antimicrobial-resistant bacteria (ARB), including extended-spectrum beta-lactamase (ESBL) producers. We sought to examine the abundance of ARB, specifically ESBLs, and antimicrobial resistance genes (ARGs) in greywater from off-grid, pastoral Bedouin villages in Southern Israel. Greywater samples (n = 21) collected from five villages were analyzed to enumerate fecal coliforms and Escherichia coli. ESBL producers were recovered on CHROMagar ESBL and confirmed by VITEK®2 (bioMerieux, Marcy l’Etoile, France) for identification and antimicrobial susceptibility testing. Total genomic DNA was extracted from greywater samples and quantitative PCR (qPCR) was used to determine relative abundance (gene copies/16S rRNA gene) of class 1 integron-integrase intI1, blaTEM, blaCTX-M-32, sul1, and qnrS. The mean count of presumptive ESBL-producing isolates was 4.5 × 106 CFU/100 mL. Of 81 presumptive isolates, 15 ESBL producers were recovered. Phenotypically, 86.7% of ESBL producers were multi-drug resistant. Results from qPCR revealed a high abundance of intI1 (1.4 × 10−1 gene copies/16S rRNA), sul1 (5.2 × 10−2 gene copies/16S rRNA), and qnrS (1.7 × 10−2 gene copies/16S rRNA) followed by blaTEM (3.5 × 10−3 gene copies/16S rRNA) and blaCTX-M-32 (2.2 × 10−5 gene copies/16S rRNA). Results from our study indicate that greywater can be a source of ARB, including ESBL producers, in settings characterized by low sanitary conditions and inadequate wastewater management.