Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(10), 2020

DOI: 10.1038/s41598-020-65231-6

Links

Tools

Export citation

Search in Google Scholar

Annealing effect on the structural and optical behavior of ZnO:Eu3+ thin film grown using RF magnetron sputtering technique and application to dye sensitized solar cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractEu-doped ZnO (ZnO:Eu3+) thin films deposited by RF magnetron sputtering have been investigated to establish the effect of annealing on the red photoluminescence. PL spectra analysis reveal a correlation between the characteristics of the red photoluminescence and the annealing temperature, suggesting efficient energy transfer from the ZnO host to the Eu3+ ions as enhanced by the intrinsic defects levels. Five peaks corresponding to 5D0–7FJ transitions were observed and attributed to Eu3+ occupancy in the lattice sites of ZnO thin films. As a proof of concept a dye sensitized solar cell with ZnO:Eu3+ thin films of high optical transparency was fabricated and tested yielding a PCE of 1.33% compared to 1.19% obtained from dye sensitized solar cells (DSSC) with pristine ZnO without Eu produced indicating 11.1% efficiency enhancement which could be attributed to spectral conversion by the ZnO:Eu3+.