Published in

Trans Tech Publications, Materials Science Forum, (993), p. 294-298, 2020

DOI: 10.4028/www.scientific.net/msf.993.294

Links

Tools

Export citation

Search in Google Scholar

Mechanical Behavior and Microstructure of Hot Deformation of with Er 7N01 Aluminum Alloy

Journal article published in 2020 by Bo Hou Zhang, Bo Long Li, Peng Qi, Ning Li, Tong Bo Wang, Zuo Ren Nie
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this paper, an Al-Zn-Mg-Cu alloy with a small amount of Er and Zr added was used as the research object. The homogenization annealing was carried out, and the 7N01 aluminum alloy was used at 300 °C, 350 °C, 400 °C, 450 °C and 0.1 s-1, 1 s-1, 10 s-1 deformation conditions by Gleeble-3500 thermal simulator. Optical Microscopy (OM), Scanning Electron Microscopy (SEM), Electron Backscatter Diffraction (EBSD) and Transmission Electron Microscopy (TEM) were used for microstructure analysis. The results show that the stress-strain curve of with Er 7N01 aluminum alloy can be divided into micro-strain stage, uniform deformation stage and steady-state flow stage during the thermal compression process. The flow stress of 7N01 aluminum alloy achieved peaks at the initial stage of strain, and then increased with the increase of strain rate and the decrease of deformation temperature. With the increase of deformation temperature and the decrease of deformation rate, the recrystallization process was significantly increased.