Dissemin is shutting down on January 1st, 2025

Published in

American Association for the Advancement of Science, Science, 6497(368), p. 1371-1376, 2020

DOI: 10.1126/science.aax0860

Links

Tools

Export citation

Search in Google Scholar

T cells with dysfunctional mitochondria induce multimorbidity and premature senescence

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Inflammaging? Blame T cells! Mitochondrial dysfunction in various tissues is a prominent characteristic of age-related deterioration, but it is unclear how mitochondrial dysfunction in particular cell types contributes to this process. Desdín-Micó et al. generated mice with T cells that were specifically deficient in a mitochondrial DNA–stabilizing protein. These animals exhibited multiple features associated with aging, including neurological, metabolic, muscular, and cardiovascular impairments. The defective T cells initiated an inflammatory program similar to that observed in older animals, a process called “inflammaging.” Blocking the cytokine tumor necrosis factor–α or administering precursors of the cofactor nicotinamide adenine dinucleotide restored many of these symptoms of senescence. These findings may potentially inform future therapies for age-associated diseases, as well as cachexia and cytokine-release syndrome. Science , this issue p. 1371