Published in

American Association for the Advancement of Science, Science, 6497(368), 2020

DOI: 10.1126/science.aba2412

Links

Tools

Export citation

Search in Google Scholar

Gas chromatography–mass spectrometry analyses of encapsulated stable perovskite solar cells

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Perovskite decomposition in detail Solar cells are subject to heating when operating in sunlight, and the organic components of hybrid perovskite solar cells, especially the commonly used methylammonium cation, can undergo thermal decomposition. Encapsulation can limit decomposition by bringing such reactions to equilibrium and can prevent exposure to damaging ambient moisture. Shi et al. examined several encapsulation schemes for perovskite films and devices by probing volatile products with gas chromatography–mass spectrometry (see the Perspective by Juarez-Perez and Haro). Pressure-tight polymer/glass stack encapsulation was effective in suppressing gas transfer and allowed solar cells containing methylammonium to pass harsh moisture and thermal cycling tests. Science , this issue p. eaba2412 ; see also p. 1309