Dissemin is shutting down on January 1st, 2025

Published in

SAGE Publications, Therapeutic Advances in Gastroenterology, (13), p. 175628481988505, 2020

DOI: 10.1177/1756284819885052

Links

Tools

Export citation

Search in Google Scholar

Magnetic resonance imaging in the assessment of pancreatic cancer with quantitative parameter extraction by means of dynamic contrast-enhanced magnetic resonance imaging, diffusion kurtosis imaging and intravoxel incoherent motion diffusion-weighted imaging

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background: Despite great technical advances in imaging, such as multidetector computed tomography and magnetic resonance imaging (MRI), diagnosing pancreatic solid lesions correctly remains challenging, due to overlapping imaging features with benign lesions. We wanted to evaluate functional MRI to differentiate pancreatic tumors, peritumoral inflammatory tissue, and normal pancreatic parenchyma by means of dynamic contrast-enhanced MRI (DCE-MRI)-, diffusion kurtosis imaging (DKI)-, and intravoxel incoherent motion model (IVIM) diffusion-weighted imaging (DWI)-derived parameters. Methods: We retrospectively analyzed 24 patients, each with histopathological diagnosis of pancreatic tumor, and 24 patients without pancreatic lesions. Functional MRI was acquired using a 1.5 MR scanner. Peritumoral inflammatory tissue was assessed by drawing regions of interest on the tumor contours. DCE-MRI, IVIM and DKI parameters were extracted. Nonparametric tests and receiver operating characteristic (ROC) curves were calculated. Results: There were statistically significant differences in median values among the three groups observed by Kruskal–Wallis test for the DKI mean diffusivity (MD), IVIM perfusion fraction (fp) and IVIM tissue pure diffusivity (Dt). MD had the best results to discriminate normal pancreas plus peritumoral inflammatory tissue versus pancreatic tumor, to separate normal pancreatic parenchyma versus pancreatic tumor and to differentiate peritumoral inflammatory tissue versus pancreatic tumor, respectively, with an accuracy of 84%, 78%, 83% and area under ROC curve (AUC) of 0.85, 0.82, 0.89. The findings were statistically significant compared with those of other parameters ( p value < 0.05 using McNemar’s test). Instead, to discriminate normal pancreas versus peritumoral inflammatory tissue or pancreatic tumor and to differentiate normal pancreatic parenchyma versus peritumoral inflammatory tissue, there were no statistically significant differences between parameters’ accuracy ( p > 0.05 at McNemar’s test). Conclusions: Diffusion parameters, mainly MD by DKI, could be helpful for the differentiation of normal pancreatic parenchyma, perilesional inflammation, and pancreatic tumor.