Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Clinical Infectious Diseases, 10(71), p. e614-e623, 2020

DOI: 10.1093/cid/ciaa290

Links

Tools

Export citation

Search in Google Scholar

Whole-exome Sequencing for the Identification of Rare Variants in Primary Immunodeficiency Genes in Children With Sepsis: A Prospective, Population-based Cohort Study

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Background The role of primary immunodeficiencies (PID) in susceptibility to sepsis remains unknown. It is unclear whether children with sepsis benefit from genetic investigations. We hypothesized that sepsis may represent the first manifestation of underlying PID. We applied whole-exome sequencing (WES) to a national cohort of children with sepsis to identify rare, predicted pathogenic variants in PID genes. Methods We conducted a multicenter, population-based, prospective study including previously healthy children aged ≥28 days and <17 years admitted with blood culture-proven sepsis. Using a stringent variant filtering procedure, analysis of WES data was restricted to rare, predicted pathogenic variants in 240 PID genes for which increased susceptibility to bacterial infection has been reported. Results There were 176 children presenting with 185 sepsis episodes who underwent WES (median age, 52 months; interquartile range, 15.4–126.4). There were 41 unique predicted pathogenic PID variants (1 homozygous, 5 hemizygous, and 35 heterozygous) found in 35/176 (20%) patients, including 3/176 (2%) patients carrying variants that were previously reported to lead to PID. The variants occurred in PID genes across all 8 PID categories, as defined by the International Union of Immunological Societies. We did not observe a significant correlation between clinical or laboratory characteristics of patients and the presence or absence of PID variants. Conclusions Applying WES to a population-based cohort of previously healthy children with bacterial sepsis detected variants of uncertain significance in PID genes in 1 out of 5 children. Future studies need to investigate the functional relevance of these variants to determine whether variants in PID genes contribute to pediatric sepsis susceptibility.