Published in

Massachusetts Institute of Technology Press, Network Neuroscience, 3(4), p. 925-945, 2020

DOI: 10.1162/netn_a_00148

Links

Tools

Export citation

Search in Google Scholar

Test-retest reliability of the human functional connectome over consecutive days: identifying highly reliable portions and assessing the impact of methodological choices

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Orange circle
Preprint: archiving restricted
Orange circle
Postprint: archiving restricted
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Countless studies have advanced our understanding of the human brain and its organization by using functional magnetic resonance imaging (fMRI) to derive network representations of human brain function. However, we do not know to what extent these “functional connectomes” are reliable over time. In a large public sample of healthy participants (N = 833) scanned on two consecutive days, we assessed the test-retest reliability of fMRI functional connectivity and the consequences on reliability of three common sources of variation in analysis workflows: atlas choice, global signal regression, and thresholding. By adopting the intraclass correlation coefficient as a metric, we demonstrate that only a small portion of the functional connectome is characterized by good (6–8%) to excellent (0.08–0.14%) reliability. Connectivity between prefrontal, parietal, and temporal areas is especially reliable, but also average connectivity within known networks has good reliability. In general, while unreliable edges are weak, reliable edges are not necessarily strong. Methodologically, reliability of edges varies between atlases, global signal regression decreases reliability for networks and most edges (but increases it for some), and thresholding based on connection strength reduces reliability. Focusing on the reliable portion of the connectome could help quantify brain trait-like features and investigate individual differences using functional neuroimaging.