Published in

MDPI, Micromachines, 5(11), p. 514, 2020

DOI: 10.3390/mi11050514

Links

Tools

Export citation

Search in Google Scholar

Label-Free, High-Throughput Assay of Human Dendritic Cells from Whole-Blood Samples with Microfluidic Inertial Separation Suitable for Resource-Limited Manufacturing

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Microfluidics technology has not impacted the delivery and accessibility of point-of-care health services, like diagnosing infectious disease, monitoring health or delivering interventions. Most microfluidics prototypes in academic research are not easy to scale-up with industrial-scale fabrication techniques and cannot be operated without complex manipulations of supporting equipment and additives, such as labels or reagents. We propose a label- and reagent-free inertial spiral microfluidic device to separate red blood, white blood and dendritic cells from blood fluid, for applications in health monitoring and immunotherapy. We demonstrate that using larger channel widths, in the range of 200 to 600 µm, allows separation of cells into multiple focused streams, according to different size ranges, and we utilize a novel technique to collect the closely separated focused cell streams, without constricting the channel. Our contribution is a method to adapt spiral inertial microfluidic designs to separate more than two cell types in the same device, which is robust against clogging, simple to operate and suitable for fabrication and deployment in resource-limited populations. When tested on actual human blood cells, 77% of dendritic cells were separated and 80% of cells remained viable after our assay.