Published in

American Association for Cancer Research, Molecular Cancer Therapeutics, 7(19), p. 1562-1571, 2020

DOI: 10.1158/1535-7163.mct-19-1036

Links

Tools

Export citation

Search in Google Scholar

Pathway-specific genome editing of PI3K/mTOR tumor suppressor genes reveals that PTEN loss contributes to cetuximab resistance in head and neck cancer

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Cetuximab, an mAb targeting EGFR, is a standard of care for the treatment for locally advanced or metastatic head and neck squamous cell carcinoma (HNSCC). However, despite overexpression of EGFR in more than 90% of HNSCC lesions, most patients with HNSCC fail to respond to cetuximab treatment. In addition, there are no available biomarkers to predict sensitivity or resistance to cetuximab in the clinic. Here, we sought to advance precision medicine approaches for HNSCC by identifying PI3K/mTOR signaling network–specific cetuximab resistance mechanisms. We first analyzed the frequency of genomic alterations in genes involved in the PI3K/mTOR signaling circuitry in the HNSCC TCGA dataset. Experimentally, we took advantage of CRISPR/Cas9 genome editing approaches to systematically explore the contribution of genomic alterations in each tumor suppressor gene (TSG) controlling the PI3K–mTOR pathway to cetuximab resistance in HNSCC cases that do not exhibit PIK3CA mutations. Remarkably, we found that many HNSCC cases exhibit pathway-specific gene copy number loss of multiple TSGs that normally restrain PI3K/mTOR signaling. Among them, we found that both engineered and endogenous PTEN gene deletions can mediate resistance to cetuximab. Our findings suggest that PTEN gene copy number loss, which is highly prevalent in HNSCC, may result in sustained PI3K/mTOR signaling independent of EGFR, thereby representing a promising mechanistic biomarker predictive of cetuximab resistance in this cancer type. Further prospective studies are needed to investigate the impact of PTEN loss on cetuximab efficacy in the clinic.