Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Nutrients, 5(12), p. 1448, 2020

DOI: 10.3390/nu12051448

Links

Tools

Export citation

Search in Google Scholar

Maternal Dietary Exposure to Low-Dose Bisphenol A Affects Metabolic and Signaling Pathways in the Brain of Rat Fetuses

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Bisphenol A (BPA) is a synthetic compound widely used for the production of polycarbonate plasticware and epoxy resins. BPA exposure is widespread and more than 90% of individuals have detectable amounts of the molecule in their body fluids, which originates primarily from diet. Here, we investigated whether prenatal exposure to BPA affects the mevalonate (MVA) pathway in rat brain fetuses, and whether potential effects are sex-dependent. The MVA pathway is important for brain development and function. Our results demonstrate that the fetal brain, exposed in utero to a very low dose of BPA (2.5 µg/kg/day), displayed altered MVA pathway activation, increased protein prenylation, and a decreased level of pro-BDNF. Interestingly, the BPA-induced effects on estrogen receptor α were sex-dependent. In conclusion, this work demonstrates intergenerational effects of BPA on the brain at very low doses. Our results reveal new targets for BPA-induced interference and underline the impacts of BPA on health.