Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Sustainability, 10(12), p. 4001, 2020

DOI: 10.3390/su12104001

Links

Tools

Export citation

Search in Google Scholar

A Simple and Sustainable Prediction Method of Liquefaction-Induced Settlement at Pohang Using an Artificial Neural Network

Journal article published in 2020 by Sung-Sik Park, Peter D. Ogunjinmi ORCID, Seung-Wook Woo, Dong-Eun Lee ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Conventionally, liquefaction-induced settlements have been predicted through numerical or analytical methods. In this study, a machine learning approach for predicting the liquefaction-induced settlement at Pohang was investigated. In particular, we examined the potential of an artificial neural network (ANN) algorithm to predict the earthquake-induced settlement at Pohang on the basis of standard penetration test (SPT) data. The performance of two ANN models for settlement prediction was studied and compared in terms of the R2 correlation. Model 1 (input parameters: unit weight, corrected SPT blow count, and cyclic stress ratio (CSR)) showed higher prediction accuracy than model 2 (input parameters: depth of the soil layer, corrected SPT blow count, and the CSR), and the difference in the R2 correlation between the models was about 0.12. Subsequently, an optimal ANN model was used to develop a simple predictive model equation, which was implemented using a matrix formulation. Finally, the liquefaction-induced settlement chart based on the predictive model equation was proposed, and the applicability of the chart was verified by comparing it with the interferometric synthetic aperture radar (InSAR) image.