Full text: Download
Conventionally, liquefaction-induced settlements have been predicted through numerical or analytical methods. In this study, a machine learning approach for predicting the liquefaction-induced settlement at Pohang was investigated. In particular, we examined the potential of an artificial neural network (ANN) algorithm to predict the earthquake-induced settlement at Pohang on the basis of standard penetration test (SPT) data. The performance of two ANN models for settlement prediction was studied and compared in terms of the R2 correlation. Model 1 (input parameters: unit weight, corrected SPT blow count, and cyclic stress ratio (CSR)) showed higher prediction accuracy than model 2 (input parameters: depth of the soil layer, corrected SPT blow count, and the CSR), and the difference in the R2 correlation between the models was about 0.12. Subsequently, an optimal ANN model was used to develop a simple predictive model equation, which was implemented using a matrix formulation. Finally, the liquefaction-induced settlement chart based on the predictive model equation was proposed, and the applicability of the chart was verified by comparing it with the interferometric synthetic aperture radar (InSAR) image.