Published in

World Scientific Publishing, NANO, 07(15), p. 2050087, 2020

DOI: 10.1142/s1793292020500873

Links

Tools

Export citation

Search in Google Scholar

The Degradation Kinetics Study of Aromatic Organics with Different Functional Compounds on Anatase 001 Surface

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Anatase TiO2 photocatalysts with exposed (001) facets have attracted great attention for environmental protection technology due to their high reactivity for degradation of organic species. In this work, potassium hydrogen phthalate (denoted as KHP), as the most commonly used reference standard solution for calibrating photoelectrochemical chemical oxygen demand (denoted as PeCOD) instrument, was selected as the study sample. The intrinsic degradation kinetics of KHP on (001) surface was investigated by a photoelectrochemical (denoted as PEC) method with a purposely (001) faceted double-layered structure TiO2 photoanode. The high kinetics constants of fast process of KHP and other acids indicate that the (001) surface possesses a higher reactivity of aromatic carboxylic acid as theoretically predicted. Meanwhile, the investigation of the KHP adsorption properties on A001 photoanode provides the possibility of using this photoanode as a sensor in a new type of PeCOD instrument for organic acid determination.