Published in

MDPI, GeoHazards, 1(1), p. 20-30, 2020

DOI: 10.3390/geohazards1010003

Links

Tools

Export citation

Search in Google Scholar

A Remote Sensing-Based Method to Assess Water Level Fluctuations in Wetlands in Southern Brazil

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The characterization of water level fluctuations is crucial to explain the hydrological processes that contribute to the maintenance of the structure and function of wetlands. The aim of this study was to develop a method based on remote sensing to characterize and map the water level variation patterns, evapotranspiration, discharge, and rainfall over wetlands in the Gravataí River basin, Rio Grande do Sul (RS), Brazil. For this purpose, ground-based measurements of rainfall, water discharge, and evapotranspiration together with satellite data were used to identify the apparent water level based on the normalized difference water index (NDWI). Our results showed that the variation of the water level followed the rainfall, water discharge, and evapotranspiration seasonal patterns in the region. The NDWI showed similar values to the ground-based data collected 10 days prior to satellite image acquisition. The proposed technique allows for quantifying the pattern of flood pulses, which play an important role for establishing the connectivity between different compartments of wetlands in the study area. We conclude that our methodology based on the use of satellite data and ground measurements was a useful proposition to analyze the water level variation patterns in an area of great importance in terms of environmental degradation and use of agriculture. The information obtained may be used as inputs in hydrologic models, allowing researchers to evaluate the impact, at both local and regional scales, caused by advance of agriculture into natural environments such as wetlands.