Published in

MDPI, Applied Sciences, 9(10), p. 3042, 2020

DOI: 10.3390/app10093042

Links

Tools

Export citation

Search in Google Scholar

Effect of Precious Metals on NO Reduction by CO in Oxidative Conditions

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Carbon dioxide has become an environmental challenge, where the emissions have reached higher level than can be handled. In this regard, conversion of CO2 to value-added chemicals and thus recycling of CO2 appear a viable option. Prior to valorization, CO2 must be purified. Among several opportunities, oxyfuel combustion is a process in rapid development. However, the gases resulting from this process contain some traces of impurities that can hinder the recovery of CO2 such as NO and CO. This work has, therefore, focused on the study of the NO-CO reaction in an oxidizing medium, using heterogeneous catalytic materials based on various supported noble metals. These materials were extensively characterized by a variety of methods including Brunauer–Emmett–Teller (BET) surface area measurements, hydrogen chemisorption, transmission electron microscopy (TEM) and H2 temperature programmed reduction (H2-TPR). The results obtained show that the catalytic behavior of M/Al2O3 catalysts in CO oxidation and NO reduction with CO in oxidative conditions depends mainly on the nature of the metal. The best result for both reactions is obtained with Pt/Al2O3 catalyst. The Pt nanoparticles in their metallic form (Pt°) as evidenced by TPR could explain the activity.