Published in

Wageningen Academic Publishers, Beneficial Microbes, 3(11), p. 255-268, 2020

DOI: 10.3920/bm2019.0113

Links

Tools

Export citation

Search in Google Scholar

Effect of Saccharomyces cerevisiae UFMG A-905 in a murine model of food allergy

Distributing this paper is prohibited by the publisher
Distributing this paper is prohibited by the publisher

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Food allergy is triggered when there is an abnormal activation of the immune system by food allergens. Currently, there is no curative therapy for this pathological condition. Due to the immunomodulatory properties of probiotics they are potential candidates as therapeutic tools for food allergy. Therefore, the aim of this study was to evaluate the probiotic effect of Saccharomyces cerevisiae UFMG A-905 (905) in an in vivo model of food allergy. Probiotic effect was assessed by clinical, histological, immunological and microbiological parameters analysis. Furthermore, we also evaluated if 905 after inactivation has an effect, as well as if such an effect is dose dependent. Our results showed that oral administration of only viable 905 promotes a significant attenuation of tissue injury and myeloperoxidase (MPO) activity levels. Moreover, the treatment reduced interleukin 17 levels, and administration of the supernatant from the yeast culture also promoted a significant decrease in MPO levels. However, considering the systemic parameters, immunoglobulin (Ig)E and IgG anti-ovalbumin, which are essentials for triggering the allergic process, there was no effect, suggesting that the yeast promotes a local but not a systemic effect in the model evaluated. In addition, we found that only high doses of viable 905 were able to attenuate the signs of inflammation. In conclusion, oral administration of 905 led to a local effect that depends on the viability of the yeast.