Dissemin is shutting down on January 1st, 2025

Published in

BMJ Publishing Group, Occupational and Environmental Medicine, 4(77), p. 249-255, 2020

DOI: 10.1136/oemed-2019-106049

Links

Tools

Export citation

Search in Google Scholar

Role of nocturnal light intensity on adaptation to three consecutive night shifts: a counterbalanced crossover study

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

ObjectivesTo investigate how a standard ceiling mounted light-emitting diode (LED)-based bright light intervention affected alertness and neurobehavioural performance during three consecutive simulated night shifts, and timing of circadian rhythm after the shifts.MethodsTwenty seven participants (20 females, 21.4±2.1 years; mean±SD) worked three consecutive night shifts (23:00–07:00) under a full-spectrum (4000 K) bright light (900 lx) and a standard light (90 lx) condition in a counterbalanced crossover design (separated by 4 weeks). Subjective alertness (Karolinska Sleepiness Scale) and neurobehavioural performance (Psychomotor Vigilance Task and Digit Symbol Substitution Test) were assessed five times during each shift. Salivary dim-light melatonin onset (DLMO) was assessed before and after the shifts. The simulated night shifts were conducted in a laboratory while the participants slept at home.ResultsSubjective alertness and neurobehavioural performance deteriorated during the night shifts in both light conditions. However, bright light significantly reduced alertness and performance decrements as compared with standard light. For a subset of the participants, DLMO was delayed by a mean of 3:17±0:23 (mean±SEM) hours after three night shifts in bright light and by 2:06±0:15 hours in standard light, indicating that bright light causes larger phase delay.ConclusionBright light improved performance and alertness during simulated night shifts and improved adaptation to night work. Bright light administered by ceiling mounted LED luminaires has the potential to improve adaptation to night work and reduce the risk of accidents and injuries among night workers.Trial registration numberNCT03203538.