Published in

MDPI, Nutrients, 5(12), p. 1312, 2020

DOI: 10.3390/nu12051312

Links

Tools

Export citation

Search in Google Scholar

Prophylactic Intra-Uterine β-Cyclodextrin Administration during Intra-Uterine Ureaplasma parvum Infection Partly Prevents Liver Inflammation without Interfering with the Enterohepatic Circulation of the Fetal Sheep

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Chorioamnionitis can lead to inflammation and injury of the liver and gut, thereby predisposing patients to adverse outcomes such as necrotizing enterocolitis (NEC). In addition, intestinal bile acids (BAs) accumulation is causally linked to NEC development. Plant sterols are a promising intervention to prevent NEC development, considering their anti-inflammatory properties in the liver. Therefore, we investigated whether an intra-amniotic (IA) Ureaplasma parvum (UP) infection affected the liver and enterohepatic circulation (EHC) and evaluated whether an IA administered plant sterol mixture dissolved in β-cyclodextrin exerted prophylactic effects. An ovine chorioamnionitis model was used in which liver inflammation and the EHC were assessed following IA UP exposure in the presence or absence of IA prophylactic plant sterols (a mixture of β-sitosterol and campesterol dissolved in β-cyclodextrin (carrier)) or carrier alone. IA UP exposure caused an inflammatory reaction in the liver, histologically seen as clustered and conflated hepatic erythropoiesis in the parenchyma, which was partially prevented by IA administration of sterol + β-cyclodextrin, or β-cyclodextrin alone. In addition, IA administration of β-cyclodextrin prior to UP caused changes in the expression of several hepatic BAs transporters, without causing alterations in other aspects of the EHC. Thereby, the addition of plant sterols to the carrier β-cyclodextrin did not have additional effects.