Dissemin is shutting down on January 1st, 2025

Published in

American Physiological Society, American Journal of Physiology: Cell Physiology, 1(319), p. C34-C44, 2020

DOI: 10.1152/ajpcell.00072.2020

Links

Tools

Export citation

Search in Google Scholar

Immobilization Leads to Alterations in Intracellular Phosphagen and Creatine Transporter Content in Human Skeletal Muscle

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The role of dysregulated intracellular creatine (Cr) metabolism in disuse atrophy is unknown. In this study, skeletal muscle biopsy samples were obtained after 7 days of unilateral leg immobilization (IMMOB) and from the nonimmobilized control limb (CTRL) of 15 healthy men (23.1 ± 3.5 yr). Samples were analyzed for fiber type cross-sectional area (CSA) and creatine transporter (CreaT) at the cell membrane periphery (MEM) or intracellular (INT) areas, via immunofluorescence microscopy. Creatine kinase (CK) and AMP-activated protein kinase (AMPK) were determined via immunoblot. Phosphocreatine (PCr), Cr, and ATP were measured via enzymatic analysis. Body composition and maximal isometric knee extensor strength were assessed before and after disuse. Leg strength and fat-free mass were reduced in IMMOB (~32% and 4%, respectively; P < 0.01 for both). Type II fiber CSA was smaller (~12%; P = 0.028) and intramuscular PCr lower (~13%; P = 0.015) in IMMOB vs. CTRL. CreaT protein was greater in type I fibers in both limbs ( P < 0.01). CreaT was greater in IMMOB vs. CTRL ( P < 0.01) and inversely associated with PCr concentration in both limbs ( P < 0.05). MEM CreaT was greater than INT CreaT in type I and II fibers of both limbs (~14% for both; P < 0.01 for both). Type I fiber CreaT tended to be greater in IMMOB vs. CTRL ( P = 0.074). CK was greater and phospho-to-total AMPKThr172tended to be greater,in IMMOB vs. CTRL ( P = 0.013 and 0.051, respectively). These findings suggest that modulation of intracellular Cr metabolism is an adaptive response to immobilization in young healthy skeletal muscle.