Published in

Elsevier, Organic Electronics, 5(9), p. 829-833

DOI: 10.1016/j.orgel.2008.05.022

Links

Tools

Export citation

Search in Google Scholar

Switching dynamics in non-volatile polymer memories

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The time dependence of resistive switching in metal-metal oxide-organic semiconductor-metal diodes is investigated. The switching dynamics is controlled by two intrinsic time dependences. A single switching event occurs in a time scale of 400 nanoseconds, but the maximum repetitive switching between ON- and OFF-states is limited by a “dead time” of a few milliseconds. The dead time is the waiting time after programming in which a next switch is inhibited. Therefore, fast repetitive pulsing prevents the observation of non-volatile switching and limits the maximum clock rate at which these memories can be used. Understanding the origin of this dead time is crucial to future memory applications. Furthermore, the occurrence of a dead time is possibly the origin of the huge variation in the reported switching times.