Published in

IOP Publishing, Environmental Research Letters, 5(15), p. 054012, 2020

DOI: 10.1088/1748-9326/ab7b99

Links

Tools

Export citation

Search in Google Scholar

Using remote sensing to detect, validate, and quantify methane emissions from California solid waste operations

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Solid waste management represents one of the largest anthropogenic methane emission sources. However, precise quantification of landfill and composting emissions remains difficult due to variety of site-specific factors that contribute to landfill gas generation and effective capture. Remote sensing is an avenue to quantify process-level emissions from waste management facilities. The California Methane Survey flew the Next Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) over 270 landfills and 166 organic waste facilities repeatedly during 2016–2018 to quantify their contribution to the statewide methane budget. We use representative methane retrievals from this campaign to present three specific findings where remote sensing enabled better landfill and composting methane monitoring: (1) Quantification of strong point source emissions from the active face landfills that are difficult to capture by in situ monitoring or landfill models, (2) emissions that result from changes in landfill infrastructure (design, construction, and operations), and (3) unexpected large emissions from two organic waste management methods (composting and digesting) that were originally intended to help mitigate solid waste emissions. Our results show that remotely-sensed emission estimates reveal processes that are difficult to capture in biogas generation models. Furthermore, we find that airborne remote sensing provides an effective avenue to study the temporally changing dynamics of landfills. This capability will be further improved with future spaceborne imaging spectrometers set to launch in the 2020s.