Published in

SAGE Publications, Journal of Psychopharmacology, 5(34), p. 524-531, 2020

DOI: 10.1177/0269881120907972

Links

Tools

Export citation

Search in Google Scholar

A new genetic locus for antipsychotic-induced weight gain: A genome-wide study of first-episode psychosis patients using amisulpride (from the OPTiMiSE cohort)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background: Antipsychotic-induced weight gain is a common and debilitating side effect of antipsychotics. Although genome-wide association studies of antipsychotic-induced weight gain have been performed, few genome-wide loci have been discovered. Moreover, these genome-wide association studies have included a wide variety of antipsychotic compounds. Aims: We aim to gain more insight in the genomic loci affecting antipsychotic-induced weight gain. Given the variable pharmacological properties of antipsychotics, we hypothesized that targeting a single antipsychotic compound would provide new clues about genomic loci affecting antipsychotic-induced weight gain. Methods: All subjects included for this genome-wide association study ( n=339) were first-episode schizophrenia spectrum disorder patients treated with amisulpride and were minimally medicated (defined as antipsychotic use <2 weeks in the previous year and/or <6 weeks lifetime). Weight gain was defined as the increase in body mass index from before until approximately 1 month after amisulpride treatment. Results: Our genome-wide association analyses for antipsychotic-induced weight gain yielded one genome-wide significant hit (rs78310016; β=1.05; p=3.66 × 10−08; n=206) in a locus not previously associated with antipsychotic-induced weight gain or body mass index. Minor allele carriers had an odds ratio of 3.98 ( p=1.0 × 10−03) for clinically meaningful antipsychotic-induced weight gain (⩾7% of baseline weight). In silico analysis elucidated a chromatin interaction with 3-Hydroxy-3-Methylglutaryl-CoA Synthase 1. In an attempt to replicate single-nucleotide polymorphisms previously associated with antipsychotic-induced weight gain, we found none were associated with amisulpride-induced weight gain. Conclusion: Our findings suggest the involvement of rs78310016 and possibly 3-Hydroxy-3-Methylglutaryl-CoA Synthase 1 in antipsychotic-induced weight gain. In line with the unique binding profile of this atypical antipsychotic, our findings furthermore hint that biological mechanisms underlying amisulpride-induced weight gain differ from antipsychotic-induced weight gain by other atypical antipsychotics.