American Association for Cancer Research, Clinical Cancer Research, 9(26), p. 2104-2110, 2020
DOI: 10.1158/1078-0432.ccr-19-2591
Full text: Unavailable
Abstract Purpose: Radium-223 is approved for metastatic castration-resistant prostate cancer (mCRPC) based on improved overall survival, and delay in skeletal related events. However, it is not associated with PSA or radiographic response, which poses a challenge in real-time assessment of its efficacy. Surrogate markers of treatment outcomes may facilitate tailoring treatment duration with radium-223, by limiting the duration of therapy with radium-223 in these patients. Here, we sought to investigate the utility of bone metabolic markers (BMMs) as surrogate markers of response to radium-223 in mCRPC. Patients and Methods: A prospective phase II trial of radium-223 plus enzalutamide (RE) versus enzalutamide alone was designed to assess surrogacy of BMMs with respect to response to radium-223. Enzalutamide was used as a comparator in lieu of placebo due to the progressive disease. Co-primary endpoints were relative change in serum BMM N-telopeptide (NTP) levels from baseline to 6 months between the two arms and safety and feasibility of the combination. Results: Thirty-nine men were randomized to RE (n = 27) or enzalutamide (n = 12). Combination was safe and feasible. Primary endpoint was met. A statistically significant relative change to NTP ratios between arms (0.64, 95% confidence interval, 0.51–0.81; P = 0.00048) favored RE versus enzalutamide. Overall, BMMs decreased with the RE therapy compared with enzalutamide. Improved PSA response rate in RE versus enzalutamide (P = 0.024), correlated with decline in BMMs. Conclusions: BMMs declined significantly with combination therapy, and were associated with improved outcomes. Upon external validation, BMMs may emerge as surrogate markers to monitor treatment with radium-223 in real-time.