Published in

Elsevier, Cell, 5(152), p. 1051-1064, 2013

DOI: 10.1016/j.cell.2013.01.051

Links

Tools

Export citation

Search in Google Scholar

Regulation of WASH-Dependent Actin Polymerization and Protein Trafficking by Ubiquitination

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Endosomal protein trafficking is an essential cellular process that is deregulated in several diseases and targeted by pathogens. Here, we describe a novel role for ubiquitination in this process. We find that the novel E3 RING ubiquitin ligase, MAGE-L2-TRIM27, localizes to endosomes through interactions with the Retromer complex. Knockdown of MAGE-L2-TRIM27 or the Ube2O E2 ubiquitin-conjugating enzyme significantly impaired Retromer-mediated transport. We further demonstrate that MAGE-L2-TRIM27 ubiquitin ligase activity is required for nucleation of endosomal F-actin by the WASH regulatory complex, a known regulator of Retromer-mediated transport. Mechanistic studies showed that MAGE-L2-TRIM27 facilitates K63-linked ubiquitination of WASH K220. Significantly, disruption of WASH ubiquitination impaired endosomal F-actin nucleation and Retromer-dependent transport. These findings provide a cellular and molecular function for MAGE-L2-TRIM27 and reveal novel aspects of retrograde transport, including an unappreciated role of K63-linked ubiquitination and identification of an activating signal of the WASH regulatory complex.