Published in

MDPI, Processes, 5(8), p. 524, 2020

DOI: 10.3390/pr8050524

Links

Tools

Export citation

Search in Google Scholar

Pollen Bee Aqueous Extract-Based Synthesis of Silver Nanoparticles and Evaluation of Their Anti-Cancer and Anti-Bacterial Activities

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Bee pollens are rich source of essential amino acids and are often considered as complete food for human beings. Herein, we exploited the potential reducing abilities of Bee pollens extract for the eco-friendly preparation of silver nanoparticles (AgNPs-G). The resulting NPs were characterized using a combination of microscopic and spectroscopic techniques. The analyses confirm the formation of spherical Ag NPs. AgNPs-G obtained from the aqueous extract of bee pollens was used to study their antibacterial properties against Gram-positive and Gram-negative microbes using the Minimum Inhibitory Concentration 50 (MIC50) method. The antibacterial properties of AgNPs-G were compared to the properties of chemically synthesized Ag NPs (AgNPs-C) using sodium borohydride as a reducing agent. The green synthesized nanoparticles (AgNPs-G) exhibited a better antibacterial activity against most of the studied strains when compared to the chemically synthesized Ag NPs (AgNPs-C). In addition, the anti-cancer activity of Ag NPs was also studied against human liver and breast carcinoma cell lines by applying MTT-assay. The Ag NPs demonstrated considerable anticancer activity against the studied cell lines and exhibited high IC50 values in both MCF-7 and HepG2 cell lines.