Published in

BioMed Central, BMC Bioinformatics, 1(21), 2020

DOI: 10.1186/s12859-020-3500-3

Links

Tools

Export citation

Search in Google Scholar

circRNAprofiler: an R-based computational framework for the downstream analysis of circular RNAs

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Circular RNAs (circRNAs) are a newly appreciated class of non-coding RNA molecules. Numerous tools have been developed for the detection of circRNAs, however computational tools to perform downstream functional analysis of circRNAs are scarce. Results We present circRNAprofiler, an R-based computational framework that runs after circRNAs have been identified. It allows to combine circRNAs detected by multiple publicly available annotation-based circRNA detection tools and to analyze their expression, genomic context, evolutionary conservation, biogenesis and putative functions. Conclusions Overall, the circRNA analysis workflow implemented by circRNAprofiler is highly automated and customizable, and the results of the analyses can be used as starting point for further investigation in the role of specific circRNAs in any physiological or pathological condition.