Published in

BioMed Central, Cancer Cell International, 1(20), 2020

DOI: 10.1186/s12935-020-01220-z

Links

Tools

Export citation

Search in Google Scholar

Roles of eIF3m in the tumorigenesis of triple negative breast cancer

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background Without targets, triple negative breast cancer (TNBC) has the worst prognosis in all subtypes of breast cancer (BC). Recently, eukaryotic translation initiation factor 3 m (eIF3m) has been declared to be involved in the malignant progression of various neoplasms. The aim of this study is to explore biological functions of eIF3m in TNBC. Methods Multiple databases, including Oncomine, KM-plotter and so on, were performed to analyze prognosis and function of eIF3m in TNBC. After transfection of eIF3m-shRNA lentivirus, CCK-8, colony formation assay, cell cycle analysis, wound healing assay, transwell assays, mitochondrial membrane potential assay and cell apoptosis analysis were performed to explore the roles of eIF3m in TNBC cell bio-behaviors. In addition, western blotting was conducted to analyze the potential molecular mechanisms of eIF3m. Results In multiple databases, up-regulated eIF3m had lower overall survival, relapse-free survival and post progression survival in BC. EIF3m expression in TNBC was obviously higher than in non-TNBC or normal breast tissues. Its expression in TNBC was positively related to differentiation, lymph node invasion and distant metastasis. After knockdown of eIF3m, cell proliferation, migration, invasion and levels of mitochondrial membrane potential of MDA-MB-231 and MDA-MB-436 were all significantly suppressed, while apoptosis rates of them were obviously increased. In addition, eIF3m could regulate cell-cycle, epithelial–mesenchymal transition and apoptosis-related proteins. Combined with public databases and RT-qPCR, 14 genes were identified to be modulated by eIF3m in the development of TNBC. Conclusions eIF3m is an unfavorable indicator of TNBC, and plays a vital role in the process of TNBC tumorigenesis.