Published in

MDPI, Symmetry, 4(12), p. 596, 2020

DOI: 10.3390/sym12040596

Links

Tools

Export citation

Search in Google Scholar

On the Tortuosity of TPMS Scaffolds for Tissue Engineering

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Recently, bone tissue engineering (TE) has seen new developments, with triply periodic minimal surfaces (TPMSs) being used to develop new porosity-controlled scaffolds to interface new tissue growth. The process of choosing the best geometry to a specific application still lacks research, so the goal for this work is to propose a new method of scaffold selection, based on assessing the tortuosity inside these symmetric TPMS-based structures. Additionally, computer fluid dynamic (CFD) simulations were conducted to validate this method. The comparison between tortuosity and CFD outputs suggests that an analysis of the tortuosity could be used as an early indicator of the scaffold’s viability for specific applications, favouring scaffolds with more intricate and curvature-dependent streamlines.