Dissemin is shutting down on January 1st, 2025

Published in

European Geosciences Union, Atmospheric Chemistry and Physics, 8(20), p. 4951-4968, 2020

DOI: 10.5194/acp-20-4951-2020

Links

Tools

Export citation

Search in Google Scholar

Ice-nucleating ability of particulate emissions from solid-biomass-fired cookstoves: an experimental study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. This research was part of the Salutary Umeå Study of Aerosols in Biomass Cookstove Emissions (SUSTAINE) laboratory experiment campaign. We studied ice-nucleating abilities of particulate emissions from solid-fuel-burning cookstoves, using a portable ice nuclei counter, Spectrometer Ice Nuclei (SPIN). These emissions were generated from two traditional cookstove types commonly used for household cooking in sub-Saharan Africa and two advanced gasifier stoves under research to promote sustainable development alternatives. The solid fuels studied included biomass from two different African tree species, Swedish softwood and agricultural residue products relevant to the region. Measurements were performed with a modified version of the standard water boiling test on polydisperse samples from flue gas during burning and size-selected accumulation mode soot particles from a 15 m3 aerosol-storage chamber. The studied soot particle sizes in nanometers were 250, 260, 300, 350, 400, 450 and 500. From this chamber, the particles were introduced to water-supersaturated freezing conditions (−32 to −43 ∘C) in the SPIN. Accumulation mode soot particles generally produced an ice-activated fraction of 10−3 in temperatures 1–1.5 ∘C higher than that required for homogeneous freezing at fixed RHw=115 %. In five special experiments, the combustion performance of one cookstove was intentionally modified. Two of these exhibited a significant increase in the ice-nucleating ability of the particles, resulting in a 10−3 ice activation at temperatures up to 5.9 ∘C higher than homogeneous freezing and the observed increased ice-nucleating ability. We investigated six different physico-chemical properties of the emission particles but found no clear correlation between them and increasing ice-nucleating ability. We conclude that the freshly emitted combustion aerosols form ice via immersion and condensation freezing at temperatures only moderately above homogeneous freezing conditions.