Links

Tools

Export citation

Search in Google Scholar

Stable isotope ratios of epibenthic foraminifer Cibicidoides wuellerstorfi from sediment profile GeoB9526, supplement to: Zarriess, Michelle; Mackensen, Andreas (2011): Testing the impact of seasonal phytodetritus deposition on [delta]13C of epibenthic foraminifer Cibicidoides wuellerstorfi: A 31,000 year high-resolution record from the northwest African continental slope. Paleoceanography, 26, PA2202

Dataset published in 2011 by Michelle Zarriess, Andreas Mackensen
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Studies of temporal changes of ocean circulation and deep-water ventilation often rely on d13C records of epibenthic foraminifer Cibicidoides wuellerstorfi. However, primary productivity related overprints may distort the signal and simulate a chemical age of ambient water mass that is too old and simulates poorly ventilated ambient bottom waters. To further constrain the use of C. wuellerstorfi d13C records from high-productivity areas, we analyzed a 14CAMS-dated gravity core from the upwelling regime off northwest Africa at 12°N. We compare this new record with 37 radiocarbon dated d13C records from the eastern Atlantic Ocean between 45°N and 25°S that are bathed by the same water mass. Only during Heinrich events 1 and 2, when the investigated core site off northwest Africa experienced year-round, sustained deposition of organic matter, the d13C values at this site faithfully record deep-water ventilation states. During times of predominantly seasonal deposition of fresh phytodetritus, however, d13C values were significantly lower than at the reference sites. This underscores that reconstruction of paleocirculation and deep ocean ventilation using C. wuellerstorfi d13C from regions that experienced seasonal phytodetritus deposition needs to be validated by additional proxies that are not affected by local productivity.