Published in

American Association for the Advancement of Science, Science, 6496(368), p. 1211-1219, 2020

DOI: 10.1126/science.aba9102

Links

Tools

Export citation

Search in Google Scholar

Structures of cell wall arabinosyltransferases with the anti-tuberculosis drug ethambutol

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Drug inhibition of glycosyltransferasesMycobacteria, including the species that causes tuberculosis (TB), synthesize a complex cell wall that helps to support and protect the bacterial cells. The major components of the cell wall include complex heteropolysaccharides that are synthesized in the periplasmic space. Zhanget al.determined the cryo–electron microscopy structures of two transmembrane glycosyltransferase enzyme complexes that use a lipid-anchored sugar donor to append arabinose units to the cell wall polysaccharides. They also captured the anti-TB drug ethambutol bound within these complexes and observed that it binds in a site overlapping both donor and acceptor sugars. Mapping of resistance mutants provides a structural understanding of how resistance emerges while preserving function of the enzyme and may help to guide the development of next-generation anti-TB drugs that target these enzymes.Science, this issue p.1211