Published in

The Royal Society, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2234(476), p. 20190494, 2020

DOI: 10.1098/rspa.2019.0494

Links

Tools

Export citation

Search in Google Scholar

How do conservative backbone curves perturb into forced responses? A Melnikov function analysis

Journal article published in 2020 by Mattia Cenedese ORCID, George Haller
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Weakly damped mechanical systems under small periodic forcing tend to exhibit periodic response in a close vicinity of certain periodic orbits of their conservative limit. Specifically, amplitude-frequency plots for the conservative limit have often been noted, both numerically and experimentally, to serve as backbone curves for the near resonance peaks of the forced response. In other cases, such a relationship between the unforced and forced response was not observed. Here, we provide a systematic mathematical analysis that predicts which members of conservative periodic orbit families will serve as backbone curves for the forced–damped response. We also obtain mathematical conditions under which approximate numerical and experimental approaches, such as energy balance and force appropriation, are justifiable. Finally, we derive analytic criteria for the birth of isolated response branches (isolas) whose identification is otherwise challenging from numerical continuation.