Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 16(117), p. 8924-8933, 2020

DOI: 10.1073/pnas.1918308117

Links

Tools

Export citation

Search in Google Scholar

Hog1 activation delays mitotic exit via phosphorylation of Net1

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Proper chromosome segregation is critical for the maintenance of genomic information in every cell division, which is required for cell survival. Cells have orchestrated a myriad of control mechanisms to guarantee proper chromosome segregation. Upon stress, cells induce a number of adaptive responses to maximize survival that range from regulation of gene expression to control of cell-cycle progression. We have found here that in response to osmostress, cells also regulate mitosis to ensure proper telomeric and rDNA segregation during adaptation. Osmostress induces a Hog1-dependent delay of cell-cycle progression in early mitosis by phosphorylating Net1, thereby impairing timely nucleolar release and activation of Cdc14, core elements of mitosis regulation. Thus, Hog1 activation prevents segregation defects to maximize survival.