Published in

MDPI, International Journal of Molecular Sciences, 8(21), p. 2828, 2020

DOI: 10.3390/ijms21082828

Links

Tools

Export citation

Search in Google Scholar

Tolerance of Facultative Metallophyte Carlina acaulis to Cadmium Relies on Chelating and Antioxidative Metabolites

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The impact of long-term chronic cadmium stress (ChS, 0.1 µM Cd, 85 days) or short-term acute cadmium stress (AS, 10 µM Cd, 4 days) on Carlina acaulis (Asteraceae) metabolites was compared to identify specific traits. The content of Cd was higher under AS in all organs in comparison with ChS (130 vs. 16 µg·g−1 DW, 7.9 vs. 3.2 µg·g−1 DW, and 11.5 vs. 2.4 µg·g−1 DW in roots, leaves, and trichomes, respectively) while shoot bioaccumulation factor under ChS (ca. 280) indicates efficient Cd accumulation. High content of Cd in the trichomes from the AS treatment may be an anatomical adaptation mechanism. ChS evoked an increase in root biomass (hormesis), while the impact on shoot biomass was not significant in any treatment. The amounts of ascorbic acid and sum of phytochelatins were higher in the shoots but organic (malic and citric) acids dominated in the roots of plants from the ChS treatment. Chlorogenic acid, but not ursolic and oleanolic acids, was elevated by ChS. These data indicate that both chelation and enhancement of antioxidative power contribute to protection of plants exposed to long-term (chronic) Cd presence with subsequent hormetic effect.