Links

Tools

Export citation

Search in Google Scholar

Tailoring Carbon Nanostructure for High Frequency Supercapacitor Operation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

The possibility of enhancing the frequency performance of electrochemical capacitors by tailoring the nanostructure of the carbon electrode to increase electrolyte permeability is demonstrated. Highly porous, vertically oriented carbon electrodes which are in direct electrical contact with the metallic current collector are produced via MPECVD growth on metal foils. The resulting structure has a capacitance and frequency performance between that of an electrolytic capacitor and an electrochemical capacitor. Fully packaged devices are produced on Ni and Cu current collectors and performance compared to state-of-the-art electrochemical capacitors and electrolytic capacitors. The extension of capacitive behavior to the AC regime (~100 Hz) opens up an avenue for a number of new applications where physical volume of the capacitor may be significantly reduced.