The Royal Society, Journal of the Royal Society. Interface, 163(17), p. 20190740, 2020
Full text: Unavailable
The engineering of artificial cells is one of the most significant scientific challenges. Thus, controlled fabrication and in situ monitoring of biomimetic nanoscale objects are among the central issues in current science and technology. Studies of transmembrane channels and cell mechanics often require the formation of lipid bilayers (LBs), their modification and their transfer to a particular place. We present here a novel approach for remotely controlled manipulation of LBs. Layer-by-layer deposition of polyethyleneimine and poly(sodium 4-styrenesulfonate) on a nanostructured TiO 2 photoanode was performed to obtain a surface with the desired net charge and to enhance photocatalytic performance. The LB was deposited on top of a multi-layer positive polymer cushion by the dispersion of negative vesicles. The separation distance between the electrostatically linked polyelectrolyte cushion and the LB can be adjusted by changing the environmental pH, as zwitter-ionic lipid molecules undergo pH-triggered charge-shifting. Protons were generated remotely by photoanodic water decomposition on the TiO 2 surface under 365 nm illumination. The resulting pH gradient was characterized by scanning vibrating electrode and scanning ion-selective electrode techniques. The light-induced reversible detachment of the LB from the polymer-cushioned photoactive substrate was found to correlate with suggested impedance models.