Dissemin is shutting down on January 1st, 2025

Published in

World Scientific Publishing, International Journal of Mathematics for Industry, 01(11), 2019

DOI: 10.1142/s2661335219300018

Links

Tools

Export citation

Search in Google Scholar

Minimum description length revisited

Journal article published in 2019 by Peter Grünwald, Teemu Roos ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This is an up-to-date introduction to and overview of the Minimum Description Length (MDL) Principle, a theory of inductive inference that can be applied to general problems in statistics, machine learning and pattern recognition. While MDL was originally based on data compression ideas, this introduction can be read without any knowledge thereof. It takes into account all major developments since 2007, the last time an extensive overview was written. These include new methods for model selection and averaging and hypothesis testing, as well as the first completely general definition of MDL estimators. Incorporating these developments, MDL can be seen as a powerful extension of both penalized likelihood and Bayesian approaches, in which penalization functions and prior distributions are replaced by more general luckiness functions, average-case methodology is replaced by a more robust worst-case approach, and in which methods classically viewed as highly distinct, such as AIC versus BIC and cross-validation versus Bayes can, to a large extent, be viewed from a unified perspective.