Published in

MDPI, Viruses, 4(12), p. 389, 2020

DOI: 10.3390/v12040389

Links

Tools

Export citation

Search in Google Scholar

Characterisation of Peste Des Petits Ruminants Disease in Pastoralist Flocks in Ngorongoro District of Northern Tanzania and Bluetongue Virus Co-Infection

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Peste des petits ruminants (PPR) disease was first confirmed in Tanzania in 2008 in sheep and goats in Ngorongoro District, northern Tanzania, and is now endemic in this area. This study aimed to characterise PPR disease in pastoralist small ruminant flocks in Ngorongoro District. During June 2015, 33 PPR-like disease reports were investigated in different parts of the district, using semi-structured interviews, clinical examinations, PPR virus rapid detection test (PPRV-RDT), and laboratory analysis. Ten flocks were confirmed as PPRV infected by PPRV-RDT and/or real-time reverse transcription-polymerase chain reaction (RT-qPCR), and two flocks were co-infected with bluetongue virus (BTV), confirmed by RT-qPCR. Phylogenetic analysis of six partial N gene sequences showed that the PPR viruses clustered with recent lineage III Tanzanian viruses, and grouped with Ugandan, Kenyan and Democratic Republic of Congo isolates. No PPR-like disease was reported in wildlife. There was considerable variation in clinical syndromes between flocks: some showed a full range of PPR signs, while others were predominantly respiratory, diarrhoea, or oro-nasal syndromes, which were associated with different local disease names (olodua—a term for rinderpest, olkipiei—lung disease, oloirobi—fever, enkorotik—diarrhoea). BTV co-infection was associated with severe oro-nasal lesions. This clinical variability makes the field diagnosis of PPR challenging, highlighting the importance of access to pen-side antigen tests and multiplex assays to support improved surveillance and targeting of control activities for PPR eradication.