Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 2(494), p. 1744-1750, 2020

DOI: 10.1093/mnras/staa836

Links

Tools

Export citation

Search in Google Scholar

A two-sided but significantly beamed jet in the supercritical accretion quasar IRAS F11119+3257

Journal article published in 2020 by Jun Yang ORCID, Zsolt Paragi, Tao An ORCID, Willem A. Baan ORCID, Prashanth Mohan, Xiang Liu
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Highly accreting quasars are quite luminous in the X-ray and optical regimes; while, they tend to become radio quiet and have optically thin radio spectra. Among the known quasars, IRAS F11119+3257 is a supercritical accretion source because it has a bolometric luminosity slightly above the Eddington limit and extremely powerful X-ray outflows. To probe its radio structure, we investigated its radio spectrum between 0.15 and 96.15 GHz and performed very-long-baseline interferometric (VLBI) observations with the European VLBI Network (EVN) at 1.66 and 4.93 GHz. The deep EVN image at 1.66 GHz shows a two-sided jet with a projected separation about 200 pc and a very high flux density ratio of about 290. Together with the best-fitting value of the integrated spectral index of −1.31 ± 0.02 in the optically thin part, we infer that the approaching jet has an intrinsic speed at least 0.57 times of the light speed. This is a new record among the known all kinds of super-Eddington accreting sources and unlikely accelerated by the radiation pressure in a certain models. We propose a scenario in which IRAS F11119+3257 is an unusual compact symmetric object with a small jet viewing angle and a radio spectrum peaking at 0.53 ± 0.06 GHz mainly due to the synchrotron self-absorption.