Published in

MDPI, Applied Sciences, 7(10), p. 2601, 2020

DOI: 10.3390/app10072601

Links

Tools

Export citation

Search in Google Scholar

Optimisation of 2D U-Net Model Components for Automatic Prostate Segmentation on MRI

Journal article published in 2020 by Indriani P. Astono ORCID, James S. Welsh ORCID, Stephan Chalup ORCID, Peter Greer ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this paper, we develop an optimised state-of-the-art 2D U-Net model by studying the effects of the individual deep learning model components in performing prostate segmentation. We found that for upsampling, the combination of interpolation and convolution is better than the use of transposed convolution. For combining feature maps in each convolution block, it is only beneficial if a skip connection with concatenation is used. With respect to pooling, average pooling is better than strided-convolution, max, RMS or L2 pooling. Introducing a batch normalisation layer before the activation layer gives further performance improvement. The optimisation is based on a private dataset as it has a fixed 2D resolution and voxel size for every image which mitigates the need of a resizing operation in the data preparation process. Non-enhancing data preprocessing was applied and five-fold cross-validation was used to evaluate the fully automatic segmentation approach. We show it outperforms the traditional methods that were previously applied on the private dataset, as well as outperforming other comparable state-of-the-art 2D models on the public dataset PROMISE12.