Published in

MDPI, Energies, 7(13), p. 1791, 2020

DOI: 10.3390/en13071791

Links

Tools

Export citation

Search in Google Scholar

A New Efficient Step-Up Boost Converter with CLD Cell for Electric Vehicle and New Energy Systems

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

An increase in demand for renewable energy resources, energy storage technologies, and electric vehicles requires high-power level DC-DC converters. The DC-DC converter that is suitable for high-power conversion applications (i.e., resonant, full-bridge or the dual-active bridge) requires magnetic transformer coupling between input and output stage. However, transformer design in these converters remains a challenging problem, with several non-linear scaling issues that need to be simultaneously optimized to reduce losses and maintain acceptable performance. In this paper, a new transformer-less high step-up boost converter with a charge pump capacitorand capacitor-inductor-diode CLD cell is proposed using dynamic modeling. The experimental and simulation results of the proposed converter are carried out in a laboratory and through Matlab Simulink, where 10 V is given as an input voltage, and at the output, 100 V achieved in the proposed converter. A comparative analysis of the proposed converter has also been done with a conventional quadratic converter that has similar parameters. The results suggest that the proposed converter can obtain high voltage gain without operating at the maximum duty cycle and is more efficient than the conventional converter.