Published in

American Society of Mechanical Engineers, Journal of Electrochemical Energy Conversion and Storage, 4(17), 2020

DOI: 10.1115/1.4046661

Links

Tools

Export citation

Search in Google Scholar

Comparing Physical and Electrochemical Properties of Different Weave Patterns for Carbon Cloth Electrodes in Redox Flow Batteries

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Redox flow batteries (RFBs) are an emerging electrochemical technology suitable for energy-intensive grid storage, but further cost reductions are needed for broad deployment. Overcoming cell performance limitations through improvements in the design and engineering of constituent components represent a promising pathway to lower system costs. Of particular relevance, but limited in study, are the porous carbon electrodes whose surface composition and microstructure impact multiple aspects of cell behavior. Here, we systematically investigate woven carbon cloth electrodes based on identical carbon fibers but arranged into different weave patterns (plain, 8-harness satin, 2 × 2 basket) of different thicknesses to identify structure–function relations and generalizable descriptors. We first evaluate the physical properties of the electrodes using a suite of analytical methods to quantify structural characteristics, accessible surface area, and permeability. We then study the electrochemical performance in a diagnostic flow cell configuration to elucidate resistive losses through polarization and impedance analysis and to estimate mass transfer coefficients through limiting current measurements. Finally, we combine these findings to develop power law relations between relevant dimensional and dimensionless quantities and to calculate extensive mass transfer coefficients. These studies reveal nuanced relationships between the physical morphology of the electrode and its electrochemical and hydraulic performance and suggest that the plain weave pattern offers the best combination of these attributes. More generally, this study provides physical data and experimental insights that support the development of purpose-built electrodes using a woven materials platform.