Published in

American Association for the Advancement of Science, Science, 6491(368), 2020

DOI: 10.1126/science.abb6936

Links

Tools

Export citation

Search in Google Scholar

Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Instantaneous contact tracing New analyses indicate that severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2) is more infectious and less virulent than the earlier SARS-CoV-1, which emerged in China in 2002. Unfortunately, the current virus has greater epidemic potential because it is difficult to trace mild or presymptomatic infections. As no treatment is currently available, the only tools that we can currently deploy to stop the epidemic are contact tracing, social distancing, and quarantine, all of which are slow to implement. However imperfect the data, the current global emergency requires more timely interventions. Ferretti et al. explored the feasibility of protecting the population (that is, achieving transmission below the basic reproduction number) using isolation coupled with classical contact tracing by questionnaires versus algorithmic instantaneous contact tracing assisted by a mobile phone application. For prevention, the crucial information is understanding the relative contributions of different routes of transmission. A phone app could show how finite resources must be divided between different intervention strategies for the most effective control. Science , this issue p. eabb6936