Published in

Nature Research, Scientific Reports, 1(10), 2020

DOI: 10.1038/s41598-020-63093-6

Links

Tools

Export citation

Search in Google Scholar

Correlations between lignin content and structural robustness in plants revealed by X-ray ptychography

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractLignin is a heterogeneous aromatic polymer responsible for cell wall stiffness and protection from pathogen attack. However, lignin represents a bottleneck to biomass degradation due to its recalcitrance related to the natural cell wall resistance to release sugars for fermentation or further processing. A biological approach involving genetics and molecular biology was used to disrupt lignin pathway synthesis and decrease lignin deposition. Here, we imaged three-dimensional fragments of the petioles of wild type and C4H lignin mutant Arabidopsis thaliana plants by synchrotron cryo-ptychography. The three-dimensional images revealed the heterogeneity of vessels, parenchyma, and fibre cell wall morphologies, highlighting the relation between disturbed lignin deposition and vessel implosion (cell collapsing and obstruction of water flow). We introduce a new parameter to accurately define cell implosion conditions in plants, and we demonstrate how cryo-ptychographic X-ray computed tomography (cryo-PXCT) provides new insights for plant imaging in three dimensions to understand physiological processes.