Published in

SAGE Publications, Clinical EEG and Neuroscience, 5(51), p. 339-347, 2020

DOI: 10.1177/1550059420911525

Links

Tools

Export citation

Search in Google Scholar

EEG to Identify Attempted Movement in Unresponsive Wakefulness Syndrome

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Assessment of consciousness following severe brain-injury is challenging. Our hypothesis is that electroencephalography (EEG) can provide information on awareness, in terms of oscillatory activity and network task–related modifications, in people with disorders of consciousness. Similar results were obtained with neuroimaging techniques; we aim at demonstrating the use of EEG, which is low cost and routinely implemented, to the same goal. Nineteen-channel EEG was recorded in 7 persons with unresponsive wakefulness syndrome (UWS) and in 10 healthy subjects during the execution of active (attempted movement) and passive motor tasks as well as 2 mental imagery tasks. Event-related synchronization/desynchronization (ERS/ERD), coherence and network parameters were calculated in delta (1-4 Hz), theta (4-8 Hz), alpha1 (8-10 Hz), alpha2 (10-12 Hz), and beta (13-30 Hz) ranges. In UWS subjects, passive movement induced a weak alpha2 ERD over contralateral sensorimotor area. During motor imagery, ERD was detected over the frontal and motor contralateral brain areas; during spatial imagery, ERS in lower alpha band over the right temporo-parietal regions was missing. In UWS, functional connectivity provided evidence of network disruption and isolation of the motor areas, which cannot dialog with adjacent network nodes, likely suggesting a diffuse structural alteration. Our findings suggest that people with a clinical diagnosis of UWS were able to modulate their brain activity when prompted to perform movement tasks and thus suggest EEG as a potential tool to support diagnosis of disorders of consciousness.